

Date Planned : / /	Daily Tutorial Sheet - 11	Expected Duration : 90 Min
Actual Date of Attempt : / /	Numerical Value Type for JEE Main	Exact Duration :

- **126.** The number of three centre two electron bonds in a molecule of diborane is_____
- **127.** How many hydrogen bonded water molecules are present in $CuSO_4 \cdot 5H_2O$?
- **128.** How many equitorial bonds are there are in PCl_5 ?
- **129.** The number of completely filled π molecular orbitals in ground state of C_2 is_____.
- **130.** The number of non-bonding electrons of N_2 is_____.
- **131.** The π^* molecular orbital has _____ nodal planes.

 \odot

- **132.** How many lone pairs are there at xenon in $XeOF_4$?
- **133.** The number of $(p\pi d\pi)$ bonds in XeO_4 is_____.

 $oldsymbol{f (}$

- **134.** The number of (P = O) bonds in P_4O_{10} is_____.
- **135.** The number of covalent bonds in C_3O_2 is_____.
- **136.** The maximum possible number of hydrogen bonds in which a water molecule can participate in ice is_____.
- **137.** How many 'sp' hybrid orbital are there in allene C_3H_4 ?
- **138.** Total number of species among following, in which bond angle (w.r.t. central atom) is equal to or less than 109°28' and also they act as Lewis base.

$$NH_3$$
, NMe_3 , $O(SiH_3)_2$, ICl_4^- , XeO_3 , BF_2Cl , SiF_4 , AsH_3 , SO_2F_2

139. The number of species which has/have symmetrical electronic distribution in their HOMO and also paramagnetic.

103

$$N_2^+$$
, O_2^{2-} , C_2 , O_2 , B_2 , C_2^{2-} , N_2^{2-}

140. Total number of molecules which can form H-bond among themselves. SiH₃OH, HCN, B(OMe)₃, NHMe₂, CH₃CONH₂, HCHO, HCOOH, NH₂OH, H₄SiO₄